Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 299
Filtrar
1.
J Cell Biol ; 222(2)2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36469001

RESUMEN

Volume electron microscopy is an important imaging modality in contemporary cell biology. Identification of intracellular structures is a laborious process limiting the effective use of this potentially powerful tool. We resolved this bottleneck with automated segmentation of intracellular substructures in electron microscopy (ASEM), a new pipeline to train a convolutional neural network to detect structures of a wide range in size and complexity. We obtained dedicated models for each structure based on a small number of sparsely annotated ground truth images from only one or two cells. Model generalization was improved with a rapid, computationally effective strategy to refine a trained model by including a few additional annotations. We identified mitochondria, Golgi apparatus, endoplasmic reticulum, nuclear pore complexes, caveolae, clathrin-coated pits, and vesicles imaged by focused ion beam scanning electron microscopy. We uncovered a wide range of membrane-nuclear pore diameters within a single cell and derived morphological metrics from clathrin-coated pits and vesicles, consistent with the classical constant-growth assembly model.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Microscopía Electrónica , Redes Neurales de la Computación , Clatrina , Retículo Endoplásmico/ultraestructura , Aparato de Golgi/ultraestructura , Microscopía Electrónica/métodos , Mitocondrias/ultraestructura , Poro Nuclear/ultraestructura , Caveolas/ultraestructura , Biología Celular
2.
Biomed Pharmacother ; 153: 113282, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35750009

RESUMEN

Multiple pathophysiological pathways are activated during the process of myocardial injury. Various cardioprotective strategies protect the myocardium from ischemia, infarction, and ischemia/reperfusion (I/R) injury through different targets, yet the clinical translation remains limited. Caveolae and its structure protein, caveolins, have been suggested as a bridge to transmit damage-preventing signals and mediate the protection of ultrastructure in cardiomyocytes under pathological conditions. In this review, we first briefly introduce caveolae and caveolins. Then we review the cardioprotective strategies mediated by caveolins through various pathophysiological pathways. Finally, some possible research directions are proposed to provide future experiments and clinical translation perspectives targeting caveolin based on the investigative evidence.


Asunto(s)
Caveolinas , Daño por Reperfusión Miocárdica , Caveolas/metabolismo , Caveolas/patología , Caveolas/ultraestructura , Caveolina 1/metabolismo , Caveolinas/metabolismo , Humanos , Isquemia/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocardio/patología
3.
Cell Rep Med ; 3(1): 100497, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35106509

RESUMEN

The blood-brain barrier (BBB) restricts clinically relevant accumulation of many therapeutics in the CNS. Low-dose methamphetamine (METH) induces fluid-phase transcytosis across BBB endothelial cells in vitro and could be used to enhance CNS drug delivery. Here, we show that low-dose METH induces significant BBB leakage in rodents ex vivo and in vivo. Notably, METH leaves tight junctions intact and induces transient leakage via caveolar transport, which is suppressed at 4°C and in caveolin-1 (CAV1) knockout mice. METH enhances brain penetration of both small therapeutic molecules, such as doxorubicin (DOX), and large proteins. Lastly, METH improves the therapeutic efficacy of DOX in a mouse model of glioblastoma, as measured by a 25% increase in median survival time and a significant reduction in satellite lesions. Collectively, our data indicate that caveolar transport at the adult BBB is agonist inducible and that METH can enhance drug delivery to the CNS.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Caveolas/metabolismo , Metanfetamina/farmacología , Preparaciones Farmacéuticas/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/ultraestructura , Caveolas/efectos de los fármacos , Caveolas/ultraestructura , Doxorrubicina/farmacología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/ultraestructura , Femenino , Glioma/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas Wistar
4.
Eur J Endocrinol ; 185(6): 841-854, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34643546

RESUMEN

OBJECTIVE: CAV1 encodes caveolin-1, a major protein of plasma membrane microdomains called caveolae, involved in several signaling pathways. Caveolin-1 is also located at the adipocyte lipid droplet. Heterozygous pathogenic variants of CAV1 induce rare heterogeneous disorders including pulmonary arterial hypertension and neonatal progeroid syndrome. Only one patient was previously reported with a CAV1 homozygous pathogenic variant, associated with congenital generalized lipodystrophy (CGL3). We aimed to further delineate genetic transmission, clinical, metabolic, and cellular characteristics of CGL3. DESIGN/METHODS: In a large consanguineous kindred referred for CGL, we performed next-generation sequencing, as well as clinical, imagery, and metabolic investigations. We studied skin fibroblasts from the index case and the previously reported patient with CGL3. RESULTS: Four patients, aged 8 months to 18 years, carried a new homozygous p.(His79Glnfs*3) CAV1 variant. They all displayed generalized lipodystrophy since infancy, insulin resistance, low HDL-cholesterol, and/or high triglycerides, but no pulmonary hypertension. Two patients also presented at the age of 15 and 18 years with dysphagia due to achalasia, and one patient had retinitis pigmentosa. Heterozygous parents and relatives (n = 9) were asymptomatic, without any metabolic abnormality. Patients' fibroblasts showed a complete loss of caveolae and no protein expression of caveolin-1 and its caveolin-2 and cavin-1 partners. Patients' fibroblasts also displayed insulin resistance, increased oxidative stress, and premature senescence. CONCLUSIONS: The CAV1 null variant investigated herein leads to an autosomal recessive congenital lipodystrophy syndrome. Loss of caveolin-1 and/or caveolae induces specific manifestations including achalasia which requires specific management. Overlapping phenotypic traits between the different CAV1-related diseases require further studies.


Asunto(s)
Caveolina 1/genética , Acalasia del Esófago/genética , Lipodistrofia Generalizada Congénita/genética , Adolescente , Caveolas/patología , Caveolas/ultraestructura , Caveolina 1/metabolismo , Caveolina 2/metabolismo , Senescencia Celular , Niño , Preescolar , Consanguinidad , Dislipidemias/metabolismo , Acalasia del Esófago/patología , Femenino , Fibroblastos/patología , Fibroblastos/ultraestructura , Homocigoto , Humanos , Lactante , Lipodistrofia Generalizada Congénita/metabolismo , Lipodistrofia Generalizada Congénita/patología , Masculino , Microscopía Electrónica de Transmisión , Estrés Oxidativo , Linaje , Proteínas de Unión al ARN/metabolismo
5.
Bull Exp Biol Med ; 171(3): 393-398, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34297295

RESUMEN

We studied ultrastructure and vesicular structures in endothelial cells of myocardial micro-vessels in burn patients. Electron microscopy revealed a significant decrease in volume density of vesicular structures in the endotheliocytes of myocardial capillaries in patients with burn septicotoxemia. The observed structural signs of endothelial dysfunction revealed in this category of patients can be a promising area for further research and for the development of methods of pathogenetic correction of myocardial disorders in the case of burn injury.


Asunto(s)
Quemaduras/patología , Capilares/ultraestructura , Células Endoteliales/ultraestructura , Miocardio/ultraestructura , Sepsis/patología , Adulto , Autopsia , Quemaduras/complicaciones , Capilares/patología , Caveolas/patología , Caveolas/ultraestructura , Células Endoteliales/patología , Femenino , Humanos , Masculino , Microscopía Electrónica , Persona de Mediana Edad , Miocardio/patología , Sepsis/complicaciones , Vesículas Transportadoras/patología , Vesículas Transportadoras/ultraestructura
6.
Nat Commun ; 12(1): 504, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33495460

RESUMEN

Cerebral cavernous malformations (CCMs) are vascular abnormalities that primarily occur in adulthood and cause cerebral hemorrhage, stroke, and seizures. CCMs are thought to be initiated by endothelial cell (EC) loss of any one of the three Ccm genes: CCM1 (KRIT1), CCM2 (OSM), or CCM3 (PDCD10). Here we report that mice with a brain EC-specific deletion of Pdcd10 (Pdcd10BECKO) survive up to 6-12 months and develop bona fide CCM lesions in all regions of brain, allowing us to visualize the vascular dynamics of CCM lesions using transcranial two-photon microscopy. This approach reveals that CCMs initiate from protrusion at the level of capillary and post-capillary venules with gradual dissociation of pericytes. Microvascular beds in lesions are hyper-permeable, and these disorganized structures present endomucin-positive ECs and α-smooth muscle actin-positive pericytes. Caveolae in the endothelium of Pdcd10BECKO lesions are drastically increased, enhancing Tie2 signaling in Ccm3-deficient ECs. Moreover, genetic deletion of caveolin-1 or pharmacological blockade of Tie2 signaling effectively normalizes microvascular structure and barrier function with attenuated EC-pericyte disassociation and CCM lesion formation in Pdcd10BECKO mice. Our study establishes a chronic CCM model and uncovers a mechanism by which CCM3 mutation-induced caveolae-Tie2 signaling contributes to CCM pathogenesis.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/deficiencia , Encéfalo/metabolismo , Caveolas/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Receptor TIE-2/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Encéfalo/patología , Encéfalo/ultraestructura , Caveolas/ultraestructura , Células Cultivadas , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Humanos , Ratones Noqueados , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Pericitos/metabolismo , Receptor TIE-2/genética , Transducción de Señal , Análisis de Supervivencia
7.
FEBS Lett ; 595(4): 532-547, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33314143

RESUMEN

Integrin-mediated adhesion regulates cellular responses to changes in the mechanical and biochemical properties of the extracellular matrix. Cell-matrix adhesion regulates caveolar endocytosis, dependent on caveolin 1 (Cav1) Tyr14 phosphorylation (pY14Cav1), to control anchorage-dependent signaling. We find that cell-matrix adhesion regulates pY14Cav1 levels in mouse fibroblasts. Biochemical fractionation reveals endogenous pY14Cav1 to be present in caveolae and focal adhesions (FA). Adhesion does not affect caveolar pY14Cav1, supporting its regulation at FA, in which PF-228-mediated inhibition of focal adhesion kinase (FAK) disrupts. Cell adhesion on 2D polyacrylamide matrices of increasing stiffness stimulates Cav1 phosphorylation, which is comparable to the phosphorylation of FAK. Inhibition of FAK across varying stiffnesses shows it regulates pY14Cav1 more prominently at higher stiffness. Taken together, these studies reveal the presence of FAK-pY14Cav1 crosstalk at FA, which is regulated by cell-matrix adhesion.


Asunto(s)
Caveolina 1/genética , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Quinasa 1 de Adhesión Focal/genética , Procesamiento Proteico-Postraduccional , Tirosina/metabolismo , Animales , Caveolas/efectos de los fármacos , Caveolas/metabolismo , Caveolas/ultraestructura , Caveolina 1/deficiencia , Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Embrión de Mamíferos , Endocitosis/efectos de los fármacos , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/ultraestructura , Fibroblastos/efectos de los fármacos , Fibroblastos/ultraestructura , Quinasa 1 de Adhesión Focal/metabolismo , Adhesiones Focales/efectos de los fármacos , Adhesiones Focales/metabolismo , Adhesiones Focales/ultraestructura , Mecanotransducción Celular , Ratones , Ratones Noqueados , Fosforilación/efectos de los fármacos , Cultivo Primario de Células , Inhibidores de Proteínas Quinasas/farmacología , Quinolonas/farmacología , Sulfonas/farmacología
8.
Int J Mol Sci ; 21(15)2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32751343

RESUMEN

The gap junctional protein connexin 36 (Cx36) has been co-purified with the lipid raft protein caveolin-1 (Cav-1). The relevance of an interaction between the two proteins is unknown. In this study, we explored the significance of Cav-1 interaction in the context of intracellular and membrane transport of Cx36. Coimmunoprecipitation assays and Förster resonance energy transfer analysis (FRET) were used to confirm the interaction between the two proteins in the Neuro 2a cell line. We found that the Cx36 and Cav-1 interaction was dependent on the intracellular calcium levels. By employing different microscopy techniques, we demonstrated that Cav-1 enhances the vesicular transport of Cx36. Pharmacological interventions coupled with cell surface biotinylation assays and FRET analysis revealed that Cav-1 regulates membrane localization of Cx36. Our data indicate that the interaction between Cx36 and Cav-1 plays a role in the internalization of Cx36 by a caveolin-dependent pathway.


Asunto(s)
Calcio/metabolismo , Caveolas/metabolismo , Caveolina 1/genética , Conexinas/genética , Endocitosis/genética , Microdominios de Membrana/metabolismo , Animales , Cationes Bivalentes , Caveolas/ultraestructura , Caveolina 1/metabolismo , Línea Celular Tumoral , Conexinas/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Regulación de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Transporte Iónico , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microdominios de Membrana/ultraestructura , Ratones , Microscopía Fluorescente , Neuronas/metabolismo , Neuronas/ultraestructura , Unión Proteica , Transducción de Señal , Proteína delta-6 de Union Comunicante
9.
Methods Mol Biol ; 2169: 1-10, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32548814

RESUMEN

Caveolae are small flask- or cup-shaped invaginations of the plasma membrane found in almost all vertebrate cells. Due to their small size (50-100 nm), transmission electron microscopy (TEM) has been the method of choice to study caveolae formation and ultrastructure and, more recently, to resolve the sub-caveolar localization of its protein components using novel protein labeling methods for TEM. This chapter describes a protocol for the selective visualization of caveolae and caveolar proteins by TEM, 3D tomography, and correlative light and electron microscopy (CLEM) using the peroxidase APEX2.


Asunto(s)
Caveolas/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/química , Endonucleasas/química , Microscopía Electrónica de Transmisión/métodos , Enzimas Multifuncionales/química , Animales , Caveolas/ultraestructura , Caveolina 1/metabolismo , Línea Celular , Humanos , Proteínas de Unión al ARN/metabolismo , Tomografía/métodos
10.
Methods Mol Biol ; 2169: 11-25, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32548815

RESUMEN

Membrane topology information and views of membrane-embedded protein complexes promote our understanding of membrane organization and cell biological function involving membrane compartments. Freeze-fracturing of biological membranes offers both stunning views onto integral membrane proteins and perpendicular views over wide areas of the membrane at electron microscopical resolution. This information is directly assessable for 3D analyses and quantitative analyses of the distribution of components within the membrane if it were possible to specifically detect the components of interest in the membranes. Freeze-fracture replica immunolabeling (FRIL) achieves just that. In addition, FRIL preserves antigens in their genuine cellular context free of artifacts of chemical fixation, as FRIL uses chemically unfixed cellular samples that are rapidly cryofixed. In principle, the method is not limited to integral proteins spanning the membrane. Theoretically, all membrane components should be addressable as long as they are antigenic, embedded into at least one membrane leaflet, and accessible for immunolabeling from either the intracellular or the extracellular side. Consistently, integral proteins spanning both leaflets and only partially inserted membrane proteins have been successfully identified and studied for their molecular organization and distribution in the membrane and/or in relationship to specialized membrane domains. Here we describe the freeze-fracturing of both cultured cells and tissues and the sample preparations that allowed for a successful immunogold-labeling of caveolin1 and caveolin3 or even for double-immunolabelings of caveolins with members of the syndapin family of membrane-associating and -shaping BAR domain proteins as well as with cavin 1. For this purpose samples are cryopreserved, fractured, and replicated. We also describe how the obtained stabilized membrane fractures are then cleaned to remove all loosely attached material and immunogold labeled to finally be viewed by transmission electron microscopy.


Asunto(s)
Caveolas/metabolismo , Caveolinas/metabolismo , Membrana Celular/metabolismo , Técnica de Fractura por Congelación/métodos , Inmunohistoquímica/métodos , Microscopía Electrónica de Transmisión/métodos , Animales , Caveolas/ultraestructura , Línea Celular , Criopreservación/instrumentación , Criopreservación/métodos , Técnica de Fractura por Congelación/instrumentación , Proteínas de la Membrana
11.
Elife ; 92020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32364496

RESUMEN

Caveolae are bulb-shaped invaginations of the plasma membrane (PM) that undergo scission and fusion at the cell surface and are enriched in specific lipids. However, the influence of lipid composition on caveolae surface stability is not well described or understood. Accordingly, we inserted specific lipids into the cell PM via membrane fusion and studied their acute effects on caveolae dynamics. We demonstrate that sphingomyelin stabilizes caveolae to the cell surface, whereas cholesterol and glycosphingolipids drive caveolae scission from the PM. Although all three lipids accumulated specifically in caveolae, cholesterol and sphingomyelin were actively sequestered, whereas glycosphingolipids diffused freely. The ATPase EHD2 restricts lipid diffusion and counteracts lipid-induced scission. We propose that specific lipid accumulation in caveolae generates an intrinsically unstable domain prone to scission if not restrained by EHD2 at the caveolae neck. This work provides a mechanistic link between caveolae and their ability to sense the PM lipid composition.


Asunto(s)
Adipocitos/enzimología , Proteínas Portadoras/metabolismo , Caveolas/enzimología , Colesterol/metabolismo , Glicoesfingolípidos/metabolismo , Esfingomielinas/metabolismo , Células 3T3-L1 , Animales , Proteínas Portadoras/genética , Caveolas/ultraestructura , Caveolina 1/genética , Caveolina 1/metabolismo , Endosomas/metabolismo , Células HeLa , Humanos , Gotas Lipídicas/metabolismo , Liposomas , Fusión de Membrana , Ratones , Factores de Tiempo
12.
J Cell Mol Med ; 24(6): 3724-3738, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32065471

RESUMEN

In solid tumours, elevated interstitial fluid pressure (osmotic and hydrostatic pressure) is a barrier to drug delivery and correlates with poor prognosis. Glioblastoma (GBM) further experience compressive force when growing within a space limited by the skull. Caveolae are proposed to play mechanosensing roles, and caveola-forming proteins are overexpressed in GBM. We asked whether caveolae mediate the GBM response to osmotic pressure. We evaluated in vitro the influence of spontaneous or experimental down-regulation of caveola-forming proteins (caveolin-1, CAVIN1) on the proteolytic profile and invasiveness of GBM cells in response to osmotic pressure. In response to osmotic pressure, GBM cell lines expressing caveola-forming proteins up-regulated plasminogen activator (uPA) and/or matrix metalloproteinases (MMPs), some EMT markers and increased their in vitro invasion potential. Down-regulation of caveola-forming proteins impaired this response and prevented hyperosmolarity-induced mRNA expression of the water channel aquaporin 1. CRISPR ablation of caveola-forming proteins further lowered expression of matrix proteases and EMT markers in response to hydrostatic pressure, as a model of mechanical force. GBM respond to pressure by increasing matrix-degrading enzyme production, mesenchymal phenotype and invasion. Caveola-forming proteins mediate, at least in part, the pro-invasive response of GBM to pressure. This may represent a novel target in GBM treatment.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Caveolas/metabolismo , Caveolina 1/metabolismo , Glioblastoma/metabolismo , Presión Hidrostática , Ósmosis , Acuaporina 1/genética , Acuaporina 1/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/ultraestructura , Caveolas/ultraestructura , Línea Celular Tumoral , Matriz Extracelular/metabolismo , Regulación Neoplásica de la Expresión Génica , Glioblastoma/patología , Glioblastoma/ultraestructura , Humanos , Invasividad Neoplásica
14.
Life Sci ; 247: 116942, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-31715185

RESUMEN

AIMS: The cardioprotective effects of preconditioning against ischemia-reperfusion (I/R) injury depend on the structural integrity of membrane caveolae and signaling through G protein-coupled receptors (GPCRs). However, the mechanisms underlying opioid preconditioning are not fully understood. Here, we examined whether caveolins transmitted opioid-GPCR signals to the mitochondria to mediate cardioprotection. MAIN METHODS: Mice were treated with pertussis toxin (PTX) or saline. Thirty-six hours later, mice from each group were randomly assigned to receive the δ-opioid receptor agonist SNC-121 or saline intraperitoneally 15 min before in vivo I/R. Infarct sizes in each group were compared, and immunoblot analysis was used to detect caveolin expression. The structures of caveolae and mitochondria were determined by electron microscopy (EM). The opening degree of the mitochondrial permeability transition pore (mPTP) was assessed by colorimetry, and mitochondrial respiratory function was assessed by Oxygraph-2k. KEY FINDINGS: Treatment with an opioid receptor agonist reduced the myocardial infarct size after I/R injury, increased caveolin expression, decreased mitochondrial mPTP opening, and improved mitochondrial respiratory function. EM analysis revealed that opioids induced caveolae formation in myocytes and tended to promote translocation to mitochondria. However, these protective effects were blocked by PTX. SIGNIFICANCE: Opioid-induced preconditioning depended on Gi signaling, which promoted caveolin translocation to mitochondria, supported their functional integrity, and enhanced cardiac stress adaption. Verification of this pathway will establish new targets for opioid agents in the field of cardiac protection.


Asunto(s)
Benzamidas/farmacología , Cardiotónicos/farmacología , Caveolinas/metabolismo , Mitocondrias Cardíacas/metabolismo , Piperazinas/farmacología , Receptores Opioides delta/agonistas , Receptores Opioides delta/metabolismo , Animales , Caveolas/metabolismo , Caveolas/ultraestructura , Masculino , Ratones , Mitocondrias Cardíacas/ultraestructura , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/ultraestructura , Poro de Transición de la Permeabilidad Mitocondrial , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/ultraestructura , Receptores Acoplados a Proteínas G/metabolismo
15.
Nat Commun ; 10(1): 5828, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31862885

RESUMEN

Cells remodel their structure in response to mechanical strain. However, how mechanical forces are translated into biochemical signals that coordinate the structural changes observed at the plasma membrane (PM) and the underlying cytoskeleton during mechanoadaptation is unclear. Here, we show that PM mechanoadaptation is controlled by a tension-sensing pathway composed of c-Abl tyrosine kinase and membrane curvature regulator FBP17. FBP17 is recruited to caveolae to induce the formation of caveolar rosettes. FBP17 deficient cells have reduced rosette density, lack PM tension buffering capacity under osmotic shock, and cannot adapt to mechanical strain. Mechanistically, tension is transduced to the FBP17 F-BAR domain by direct phosphorylation mediated by c-Abl, a mechanosensitive molecule. This modification inhibits FBP17 membrane bending activity and releases FBP17-controlled inhibition of mDia1-dependent stress fibers, favoring membrane adaptation to increased tension. This mechanoprotective mechanism adapts the cell to changes in mechanical tension by coupling PM and actin cytoskeleton remodeling.


Asunto(s)
Caveolas/metabolismo , Proteínas de Unión a Ácidos Grasos/metabolismo , Mecanotransducción Celular , Proteínas Proto-Oncogénicas c-abl/metabolismo , Fibras de Estrés/metabolismo , Caveolas/ultraestructura , Proteínas de Unión a Ácidos Grasos/genética , Fibroblastos , Técnicas de Inactivación de Genes , Células HEK293 , Células HeLa , Humanos , Microscopía Electrónica , Fosforilación , ARN Interferente Pequeño/metabolismo , Fibras de Estrés/ultraestructura , Estrés Mecánico
16.
Sci Rep ; 9(1): 15698, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31666588

RESUMEN

Endothelial cells contain several nanoscale domains such as caveolae, fenestrations and transendothelial channels, which regulate signaling and transendothelial permeability. These structures can be covered by filter-like diaphragms. A transmembrane PLVAP (plasmalemma vesicle associated protein) protein has been shown to be necessary for the formation of diaphragms. The expression, subcellular localization and fenestra-forming role of PLVAP in liver sinusoidal endothelial cells (LSEC) have remained controversial. Here we show that fenestrations in LSEC contain PLVAP-diaphragms during the fetal angiogenesis, but they lose the diaphragms at birth. Although it is thought that PLVAP only localizes to diaphragms, we found luminal localization of PLVAP in adult LSEC using several imaging techniques. Plvap-deficient mice revealed that the absence of PLVAP and diaphragms did not affect the morphology, the number of fenestrations or the overall vascular architecture in the liver sinusoids. Nevertheless, PLVAP in fetal LSEC (fenestrations with diaphragms) associated with LYVE-1 (lymphatic vessel endothelial hyaluronan receptor 1), neuropilin-1 and VEGFR2 (vascular endothelial growth factor receptor 2), whereas in the adult LSEC (fenestrations without diaphragms) these complexes disappeared. Collectively, our data show that PLVAP can be expressed on endothelial cells without diaphragms, contradict the prevailing concept that biogenesis of fenestrae would be PLVAP-dependent, and reveal previously unknown PLVAP-dependent molecular complexes in LSEC during angiogenesis.


Asunto(s)
Diafragma/metabolismo , Endotelio/metabolismo , Hígado/metabolismo , Proteínas de la Membrana/genética , Animales , Capilares/crecimiento & desarrollo , Capilares/metabolismo , Capilares/ultraestructura , Caveolas/metabolismo , Caveolas/ultraestructura , Diafragma/crecimiento & desarrollo , Diafragma/ultraestructura , Células Endoteliales/metabolismo , Células Endoteliales/ultraestructura , Endotelio/crecimiento & desarrollo , Endotelio/ultraestructura , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Hígado/ultraestructura , Proteínas de la Membrana/metabolismo , Ratones , Transducción de Señal/genética
17.
PLoS One ; 14(10): e0223620, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31600286

RESUMEN

Endothelial nitric oxide synthase (eNOS)-related vessel relaxation is a highly coordinated process that regulates blood flow and pressure and is dependent on caveolae. Here, we investigated the role of caveolar plasma membrane stabilization by the dynamin-related ATPase EHD2 on eNOS-nitric oxide (NO)-dependent vessel relaxation. Loss of EHD2 in small arteries led to increased numbers of caveolae that were detached from the plasma membrane. Concomitantly, impaired relaxation of mesenteric arteries and reduced running wheel activity were observed in EHD2 knockout mice. EHD2 deletion or knockdown led to decreased production of nitric oxide (NO) although eNOS expression levels were not changed. Super-resolution imaging revealed that eNOS was redistributed from the plasma membrane to internalized detached caveolae in EHD2-lacking tissue or cells. Following an ATP stimulus, reduced cytosolic Ca2+ peaks were recorded in human umbilical vein endothelial cells (HUVECs) lacking EHD2. Our data suggest that EHD2-controlled caveolar dynamics orchestrates the activity and regulation of eNOS/NO and Ca2+ channel localization at the plasma membrane.


Asunto(s)
Vasos Sanguíneos/fisiología , Proteínas Portadoras/metabolismo , Caveolas/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico/metabolismo , Vasodilatación/fisiología , Animales , Calcio/metabolismo , Caveolas/ultraestructura , Membrana Celular/metabolismo , Citosol/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Arterias Mesentéricas/diagnóstico por imagen , Arterias Mesentéricas/metabolismo , Ratones Endogámicos C57BL , Condicionamiento Físico Animal
18.
Sci Rep ; 9(1): 6696, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-31040342

RESUMEN

Caveolae are plasma membrane invaginations enriched with high cholesterol and sphingolipid content; they also contain caveolin proteins in their structure. Endothelial nitric oxide synthase (eNOS), an enzyme that synthesizes nitric oxide (NO) by converting L-arginine to L-citrulline, is highly concentrated in plasma membrane caveolae. Hypertension is associated with decreased NO production and impaired endothelium-dependent relaxation. Understanding the molecular mechanisms that follow hypertension is important. For this study, we hypothesized that spontaneously hypertensive rat (SHR) vessels should have a smaller number of caveolae, and that the caveolae structure should be disrupted in these vessels. This should impair the eNOS function and diminish NO bioavailability. Therefore, we aimed to investigate caveolae integrity and density in SHR aortas and mesenteric arteries and the role played by caveolae in endothelium-dependent relaxation. We have been able to show the presence of caveolae-like structures in SHR aortas and mesenteric arteries. Increased phenylephrine-induced contractile response after treatment with dextrin was related to lower NO release. In addition, impaired acetylcholine-induced endothelium-dependent relaxation could be related to decreased caveolae density in SHR vessels. The most important finding of this study was that cholesterol depletion with dextrin induced eNOS phosphorylation at Serine1177 (Ser1177) and boosted reactive oxygen species (ROS) production in normotensive rat and SHR vessels, which suggested eNOS uncoupling. Dextrin plus L-NAME or BH4 decreased ROS production in aorta and mesenteric arteries supernatant's of both SHR and normotensive groups. Human umbilical vein endothelial cells (HUVECs) treated with dextrin confirmed eNOS uncoupling, as verified by the reduced eNOS dimer/monomer ratio. BH4, L-arginine, or BH4 plus L-arginine inhibited eNOS monomerization. All these results showed that caveolae structure and integrity are essential for endothelium-dependent relaxation. Additionally, a smaller number of caveolae is associated with hypertension. Finally, caveolae disruption promotes eNOS uncoupling in normotensive and hypertensive rat vessels and in HUVECs.


Asunto(s)
Caveolas/patología , Endotelio Vascular/fisiopatología , Hipertensión/fisiopatología , Arterias Mesentéricas/patología , Especies Reactivas de Oxígeno/metabolismo , Acetilcolina/farmacología , Animales , Aorta/metabolismo , Aorta/patología , Caveolas/metabolismo , Caveolas/ultraestructura , Células Endoteliales de la Vena Umbilical Humana , Humanos , Hipertensión/metabolismo , Masculino , Arterias Mesentéricas/efectos de los fármacos , Arterias Mesentéricas/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fenilefrina/farmacología , Ratas Endogámicas SHR , Ratas Wistar , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología
19.
Eur J Histochem ; 63(2)2019 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-31122004

RESUMEN

Telocytes (TCs) are new interstitial cells, and they are involved in tissue regeneration, particularly in heart. Therefore, TCs are suggested to be a promising cell in regenerative medicine. However, the information of location structural characteristics and functions of TCs is still limited. In this study, cardiac TCs of the Chinese giant salamanders (Andrias davidianus) were identified by transmission electron microscopy. TCs were located in the interstitium between cardiomyocytes (CM). TCs possessed distinctive ultrastructural characteristics, including one to two very long and thin moniliform telopodes (Tps), emerging points from the cell body, caveolae, dichotomous branchings, labyrinthic systems, neighbouring exosomes and homo-cellular contacts between Tps. TCs/Tps were frequently observed in close proximity to cardiomyocytes. Moreover, Tps established hetero-cellular contacts with cardiomyocytes. Our results confirm the presence of TCs in the myocardium of the A. davidianus. This will help us to better understand roles of TCs in amphibian hearts.


Asunto(s)
Miocardio/citología , Telocitos/ultraestructura , Animales , Caveolas/ultraestructura , Exosomas/ultraestructura , Microscopía Electrónica de Transmisión , Miocitos Cardíacos/citología , Telopodos/ultraestructura , Urodelos
20.
EMBO Rep ; 19(8)2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29945933

RESUMEN

Reducing insulin/IGF-1 signaling (IIS) extends lifespan, promotes protein homeostasis (proteostasis), and elevates stress resistance of worms, flies, and mammals. How these functions are orchestrated across the organism is only partially understood. Here, we report that in the nematode Caenorhabditis elegans, the IIS positively regulates the expression of caveolin-1 (cav-1), a gene which is primarily expressed in neurons of the adult worm and underlies the formation of caveolae, a subtype of lipid microdomains that serve as platforms for signaling complexes. Accordingly, IIS reduction lowers cav-1 expression and lessens the quantity of neuronal caveolae. Reduced cav-1 expression extends lifespan and mitigates toxic protein aggregation by modulating the expression of aging-regulating and signaling-promoting genes. Our findings define caveolae as aging-governing signaling centers and underscore the potential for cav-1 as a novel therapeutic target for the promotion of healthy aging.


Asunto(s)
Envejecimiento/metabolismo , Caenorhabditis elegans/metabolismo , Caveolas/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Insulina/metabolismo , Transducción de Señal , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/ultraestructura , Proteínas de Caenorhabditis elegans/metabolismo , Caveolas/ultraestructura , Caveolina 1/metabolismo , Caveolina 2/metabolismo , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Respuesta al Choque Térmico , Longevidad , Modelos Biológicos , Proteostasis , Interferencia de ARN , Factores de Transcripción/metabolismo , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...